TCLDOT(n) TCLDOT(n)

NAME
tcldot — graph manipulation in tcl

SYNOPSIS
#l/usr/local/bin/tclsh
package requir&cldot

USAGE
Requires the dynamic loading facilities of tcl7.6 or later.

INTRODUCTION
tcldot is a tcl dynamically loadedkeension that incorporates the directed graph facilitiedotfl), and the
undirected graph facilities afeato(1),into tcl and provides a set of commands to control thasiitfes.
tcldot converts dot andneatofrom batch processing tools to an interpreted and, if needed, intersettof
graph manipulation facilities.

COMMANDS
tcldot initially adds only three commands to tcl, namdiytnew, dotread, and dotstring. These com-
mands return a handle for the graph that has just been created and that handle can then be used as a com-
mand for further actions on the graph.

All other "commands" are of the form:
handle<method> parameters

Many of the methods return further handles of graphs, nodes of edges, which are themselves registered as
commands.

The methods are described in detail bellout in summary:
Graph methods are:

addedge, addnode, addsubgraph, countedges, countnodes, layout, listattributes, listedgeat-
trib utes, listnodeattributes, listedges, listnodes, listhodesy, listsubgraphs, ender, rendergd,
queryattrib utes, gueryedgeattributes, guerynodeattributes, queryattritutevalues,
gueryedgeattributevalues, querynodeattritutevalues, setattritutes, setedgeattributes, setn-
odeattributes, showname, write.

Node methods are:

addedge, listattributes, listedges, listinedges, listoutedges, queryattributes, queryatigval-
ues, setattributes, showname.

Edge methods are:

delete, listattributes, listnodes, queryattributes, queryattritutevalues, setattributes, shw-
name.

dotnew graphType ?attributeName attributeValue? ?...?

creates a e empty graph and returns itgaphHandle.

graphTypecan be ay supported bydot(1) namely: "graph,” "digraph,” "graphstrict," or "digraph-
strict.” (In digraphs edges ka a drection from tail to head. "Strict" graphs or digraphs collapse
multiple edges between the same pair of nodes into a single edge.)

Fdlowing the mandatongraphTypeparameter thalotnew command will accept an arbitrary

02 December 1996 1

TCLDOT(n) TCLDOT(n)

number of attribute namediue pairs for the graph. Certain special graph attributes and permitted
values are described oiot(1), but the programmer can arbitrarilyvent and assign values to addi-
tional attributes bgond these.In dot the attribute name is separated from the value by an "="
character In tcldot the "=" has been replaced by a " " (space) to be more consisterichsym-

tax. e.g.

set g [dotne digraph rankdir LR]

dotread fileHandle

reads in a dot-language description of a graph from a previously opened file identifiedfits- the
Handle. The command returns tlggaphHandleof the newly read graph. e.g.

set f [open test.dot r]
set g [dotread $f]

dotstring string

reads in a dot-language description of a graph from a Tcl string; The command retugraptie
Handleof the newly read graph. e.g.

set g [dotread $dotsyntaxstring]

graphHandleaddnode?nodeName? ?attributeName attributeValue? ?...?

creates a e node in the graph whose handlegimphHandleand returns its1odeHandle. The

handle of a node is a string like: "node0" where the integer value is different for eachThede.

can be an arbitrary number of attribute name/value pairs for the node. Certain special node
attributes and permitted values are describedat{l), but the programmer can arbitrarilyvient

and assign values to additional attributes beyond these. e.g.

set n [$g addnode "N" label "Top\nNode" shape triangle eggs\ezkyo

A possible cause of confusionticidot is the distinction between handles, names, labels, amd v
ables. Thalistinction is primarily in who owns thenHandles are owned by tcldot and are guar
anteed to be unique within one interpreter sessitypically handles are assigned tariables,

like "n" above, for manipulation within a tcl scriptVariables are wned by the programmer
Names are owned by the application that is using the graph, typically names are important when
reading in a graph from anxternal program or file. Labels are the text that is displayed with the
node (or edge) when the graph is displayed, labels are meaningful to the reader of th©ghaph.

the handles and variables are essentiédltimot’s ability to manipulate abstract graphs. If a name

is not specified then it defaults to the string representation of the handle, if a label is not specified
then it defaults to the name.

graphHandleaddedgetailNode headNode ?attributeName attributeValue? ?...?

creates a e edge in the graph whose handlggimphHandleand returns itedgeHandle. tailN-
odeandheadNodean be specified either by theindeHandleor by theirnodeNamee.g.

set n [$g addnode]

set m [$g addnode]
$g addedge $n $m label "NM"

02 December 1996 2

TCLDOT(n)

TCLDOT(n)

$g addnode N
$g addnode M
$g addedge N M label "NM"

The argument is recognized as a handle if possible and so it is begtitoames lile "node6" for
nodes. Ifthere is potential for conflict then uBednode to translate explicitly from names to han-
dles. e.g.

$g addnode "node6"
$g addnode "node99"
$g addedge [$g findnode "node6"] [$g findnode "node99"]

There can be an arbitrary number of attribute name/value pairs for the edge. Certain special edge
attributes and permitted values are describedat{l), but the programmer can arbitrarilyvient
and assign values to additional attributes beyond these.

graphHandleaddsubgraph ?graphName? ?attributeName attributeValue? ?...?

creates a ve subgraph in the graph and returns giaphHandle. If the graphNameis omitted
then the name of the subgraph defaults sogitaphHandle. There can be an arbitrary number of
attribute name/alue pairs for the subgraph. Certain special graph attributes and perraitied v
are described inot(1), but the programmer can arbitrarilyvient and assign values to additional
attributes beyond these. e.g.

set sg [$g addsubgraph dinglefactor 6]

Clusters, as described dot(1), are created by ging the subgraph a name that begins with the
string: "cluster”. Cluster can be labelled by usingldiel attibute. e.qg.

set cg [$g addsubgraph cluster_A label dongle dinglefactor 6]

nodeHandleaddedgeheadNode ?attributeName attributeValue? ?...?

creates a e edge from the tail node identified by thadeHandlgo theheadNodevhich can be
specified either bypodeHandleor by nodeNaméwith preference to recognizing the argument as a
handle). Thegraph in which this is drawn is the graph in which both nodes are membiezse

can be an arbitrary number of attribute name/value pairs for the edge. These edge attributes and
permitted values are describeddiot(1). e.qg.

[$g addnode] addedge [$g addnode] label "NM"

graphHandledelete

nodeHandladelete

edgeHandlalelete

Delete all data structures associated with the graph, node or edge from the internal storage of the
interpreter Deletion of a node also results in the the deletion of all subtending edges on that node.
Deletion of a graph also results in the deletion of all nodes and subgraphs within that graph (and
hence all edges too). The return from these delete commands is a null string.

02 December 1996 3

TCLDOT(n) TCLDOT(n)

graphHandlecountnodes

graphHandlecountedges

Returns the number of nodes, or edges, in the graph.

graphHandldlistedges
graphHandldlistnodes
graphHandlelistnodesrev
graphHandldlistsubgraphs
nodeHandldistedges
nodeHandldistinedges
nodeHandldistoutedges

edgeHandldistnodes

Each return a list of handles of graphs, nodes or edges, as appropriate.

graphHandlefindnode nodeName
graphHandlefindedgetailnodeName headNodeName
nodeHandldindedgenodeName
Each return the handle of the item if found, or an error if none are fdeordnon-strict graphs

when there are multiple edges betweean twdesfindedgewill return an arbitrary edge from the
set.

graphHandleshowname
nodeHandleshowname
edgeHandlshowname
Each return the name of the item. Edge names are of the form: "a—>b" where "a" and "b" are the

names of the nodes and the connector "->" indicates the tail-to-head direction of the edge. In undi-
rected graphs the connector "--" is used.

graphHandlesetnodeattributesattributeName attributeValue ?...?

graphHandlesetedgeattributesattributeName attributeValue ?...?

Set one or more dafilt attribute name/values that are to apply to all nodes (edges) weass-o
den by subgraphs or per-node (per-edge) attributes.

graphHandldlistnodeattributes
graphHandldlistedgeattributes

Return a list of attribute names.

graphHandlequerynodeattributes attributeName ?...?

02 December 1996 4

TCLDOT(n) TCLDOT(n)

graphHandlequeryedgeattributesattributeName ?...?

Return a list of default attribute value, oredue for each of the attribute names provided with the
command.

graphHandlequerynodeattributes attributeName ?...?

graphHandlequeryedgeattributesattributeName ?...?

Return a list of pairs of attrinute name and default attribute value, one pair for each of theeattrib
names provided with the command.

graphHandlesetattributes attributeName attributeValue ?...?
nodeHandlesetattributes attributeName attributeValue ?...?

edgeHandlesetattributes attributeName attributeValue ?...?

Set one or more attribute name/value pairs for a specific graph, node, or edge instance.

graphHandldlistattributes
nodeHandldistattributes

edgeHandldistattributes

Return a list of attribute names (attribute values are providegiésyattribute

graphHandlequeryattributes attributeName ?...?
nodeHandlegueryattributes attributeName ?...?

edgeHandlgueryattributes attributeName ?...?

Return a list of attribte value, one value for each of the attribute names provided with the com-
mand.

graphHandlequeryattribute valuesattributeName ?...?
nodeHandlegueryattribute valuesattributeName ?...?

edgeHandlgueryattribute valuesattributeName ?...?

Return a list of pairs or attribute name and attribute value, ahefor each of the attuie
names provided with the command.

graphHandldayout 2DOT|NEATO|CIRCO|TWOPI|FDP|NOP?

Annotate the graph with layout information. This commands takes an abstract graph add shape
and position information to it according to the layout engimales of eye-pleasing graph layout.

If the layout engine is unspecified then it defaults torD@ directed graphs, and NE® cather-

wise. If the NOP engine is specified then layout infomation from the input graph is Tibed.

result of the layout is stored as additional attributes naahag\pairs in the graph, node and edges.
These attributes are intended to be interpreted by subseguenor render commands.

02 December 1996 5

TCLDOT(n) TCLDOT(n)

graphHandlewrite fileHandle format ?DOT|NERO|CIRCO|TWOPI|FDP|NOP?

Write a graph to the open file representedfibtyHandlein a specificformat. Possibleformats

are: "ps" "mif" "hpgl" "plain” "dot" "gif" "ismap" If the layout hasnbeen already done, then it

will be done as part of this operation using the same rules for selecting the layout engine as for the
layout command.

graphHandlerendergd gdHandle

Generates a rendering of a graph to & neexisting gifilmage structure (segTcl(1)). Returns
the gdHandleof the image.If the layout hasr’been already done, then it will be done as part of
this operation using the same rules for selecting the layout engine as for the layout command.

graphHandlerender ?canvas ?DOT|NEPRO??

If no canvasargument is provided therender returns a string of commands which, wheale-
ated, will render the graph taT& carvas whosecanvasHandlés available in variablebc

If a canvasargument is provided therender produces a set of commands @@nvasinstead of
$c.

If the layout hasi’been already done, then it will be done as part of this operation using the same
rules for selecting the layout engine as for the layout command.

#!/usr/local/bin/wish
package require Tcldot
set ¢ [cawas €]
pack $c
set g [dotner digraph rankdir LR]
$g setnodeattribute style filled color white
[$g addnode Hello] addedge [$g addnode World!]
$g layout
if {[info exists debug]} {
puts [$g render] ;# see what render produces

evd [$g render]

Render generates a series of wvas commands for each graph element, for example a node typi-
cally consist of tw items on the caas, one for the shape and the other for the label. Theagan
items are automaticalliagged (Seecarvas(n)) by the commands generated by rendEne tags

take one of two forms: text items are tagged with O<handle> and shapes and lines are rendered
with 1<handle>.

The tagging can be used to recognize when a usetsvio interact with a graph element using the
mouse. Seéhe script inexamples/dispof the tcldot distribution for a demonstration of thagif-

ity.

BUGS

Still batch-oriented. It would be nice if the layout was maintained incrementale intent is to address
this limitation in graphviz_2_0.)

02 December 1996 6

TCLDOT(n) TCLDOT(n)

AUTHOR
John Ellson (ellson@graphviz.org)

ACKNOWLEDGEMENTS
John Ousterhout, of course, fiot andtk. Steven North and Eleftherios Koutsofios fdiot. Karl Lehen-
bauer and Mark Diekhans of NeoSoft for the handles.c code which waeddieom tcIXhandles.c.Tom
Boutell of the Quest Center at Cold Spring Harbor Labs for the gifidgaroutines. Spencer Thomas of
the Unvwersity of Michigan for gdTcl.c.Dayatra Shands for coding much of the initial implementation of
tcldot.

KEYWORDS
graph, tcl, tk, dot, neato.

02 December 1996 7

